

Magnesiothermic reduction to produce porous silicon for lithium-ion batteries

Jake Entwistle and Siddharth Patwardhan

Green Nanomaterials Research Group,

Chemical and Biological Engineering, University of Sheffield.

j.entwistle@sheffield.ac.uk www.svplab.com

FNL 249, ACS San Diego, 27/8/19

Silicon vs conventional anode materials

Issues with Volume Expansion

nomaterials

Porous silicon as a solution

- High surface area ⇒ better **accessibility** for electrolyte
- Shorter lithium **diffusion** lengths due to small substructures
- Expansion into own pore volume ⇒ minimum cracking
- More favourable lithiation behaviour

Shen et al, Sci. Rep., 2016, 6, 31334

^omaterials

Li. et al, *Nat. Commun.*, 2014, **5**, 1

Current Routes to Porous Silicon

- Electroless etching
- Chemical Vapour Deposition
- Electrochemical etching

Most effective for surfaces

For Battery applications, bulk material synthesis routes are needed

Magnesiothermic Reduction for <u>bulk</u> porous silicon production

Good capacities and cyclability:

- 2500 mAh/g for 100s of cycles
 - with <20% capacity loss.

Magnesiothermic Reduction

Missing link: how the reduction process affects the properties and performance of porous silicon?

Solution: A systematic study linking processing-structure-property.

Outline of Magnesiothermic Reaction

Reduction in a furnace under flowing Ar

Removal of MgO from porous silicon

2018

*Curr. Opin. Green Sus. Chem., 12, 110,

Studying the process

Anode Performance

- The capacity retention is very good for some of these samples.
- ↑ T leads to ↑ capacity (due to high purity).

• Porosity is key for extended cycle life span.

*Publication *Currently Under Review.* 09_2019

Future work

- Optimise the porous silicon for high capacity and stable cycle life
- Techno-economic feasibility of magnesiothermic reduction
- Partnering with industry for large scale manufacturing.

Acknowledgments

EPSRC Centre for Doctoral Training

EPSRC

Engineering and Physical Sciences Research Council

Thank you

Application of magnesiothermic reduction of silica to produce porous silicon for lithium-ion batteries

Jake Entwistle and Siddharth Patwardhan

University of Sheffield, UK.

j.entwistle@sheffield.ac.uk

www.svplab.com

18344

4. Feedstock....

2 Feedstocks: mesoporous silica and non-porous quartz 2 Ts for Reduction: 650 and 850 °C

- Analysis of pore evolution is new.
- Porosity was introduced into non porous quartz.

....4. Feedstock

